Files
StarPunk/docs/design/v1.1.1/production-readiness-spec.md
Phil Skentelbery e589f5bd6c docs: Fix ADR numbering conflicts and create comprehensive documentation indices
This commit resolves all documentation issues identified in the comprehensive review:

CRITICAL FIXES:
- Renumbered duplicate ADRs to eliminate conflicts:
  * ADR-022-migration-race-condition-fix → ADR-037
  * ADR-022-syndication-formats → ADR-038
  * ADR-023-microformats2-compliance → ADR-040
  * ADR-027-versioning-strategy-for-authorization-removal → ADR-042
  * ADR-030-CORRECTED-indieauth-endpoint-discovery → ADR-043
  * ADR-031-endpoint-discovery-implementation → ADR-044

- Updated all cross-references to renumbered ADRs in:
  * docs/projectplan/ROADMAP.md
  * docs/reports/v1.0.0-rc.5-migration-race-condition-implementation.md
  * docs/reports/2025-11-24-endpoint-discovery-analysis.md
  * docs/decisions/ADR-043-CORRECTED-indieauth-endpoint-discovery.md
  * docs/decisions/ADR-044-endpoint-discovery-implementation.md

- Updated README.md version from 1.0.0 to 1.1.0
- Tracked ADR-021-indieauth-provider-strategy.md in git

DOCUMENTATION IMPROVEMENTS:
- Created comprehensive INDEX.md files for all docs/ subdirectories:
  * docs/architecture/INDEX.md (28 documents indexed)
  * docs/decisions/INDEX.md (55 ADRs indexed with topical grouping)
  * docs/design/INDEX.md (phase plans and feature designs)
  * docs/standards/INDEX.md (9 standards with compliance checklist)
  * docs/reports/INDEX.md (57 implementation reports)
  * docs/deployment/INDEX.md (deployment guides)
  * docs/examples/INDEX.md (code samples and usage patterns)
  * docs/migration/INDEX.md (version migration guides)
  * docs/releases/INDEX.md (release documentation)
  * docs/reviews/INDEX.md (architectural reviews)
  * docs/security/INDEX.md (security documentation)

- Updated CLAUDE.md with complete folder descriptions including:
  * docs/migration/
  * docs/releases/
  * docs/security/

VERIFICATION:
- All ADR numbers now sequential and unique (50 total ADRs)
- No duplicate ADR numbers remain
- All cross-references updated and verified
- Documentation structure consistent and well-organized

These changes improve documentation discoverability, maintainability, and
ensure proper version tracking. All index files follow consistent format
with clear navigation guidance.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-25 13:28:56 -07:00

710 lines
20 KiB
Markdown

# Production Readiness Improvements Specification
## Overview
Production readiness improvements for v1.1.1 focus on robustness, error handling, resource optimization, and operational visibility to ensure StarPunk runs reliably in production environments.
## Requirements
### Functional Requirements
1. **Graceful FTS5 Degradation**
- Detect FTS5 availability at startup
- Automatically fall back to LIKE-based search
- Log clear warnings about reduced functionality
- Document SQLite compilation requirements
2. **Enhanced Error Messages**
- Provide actionable error messages for common issues
- Include troubleshooting steps
- Differentiate between user and system errors
- Add configuration validation at startup
3. **Database Connection Pooling**
- Optimize connection pool size
- Monitor pool usage
- Handle connection exhaustion gracefully
- Configure pool parameters
4. **Structured Logging**
- Implement log levels (DEBUG, INFO, WARNING, ERROR, CRITICAL)
- JSON-structured logs for production
- Human-readable logs for development
- Request correlation IDs
5. **Health Check Improvements**
- Enhanced /health endpoint
- Detailed health status (when authorized)
- Component health checks
- Readiness vs liveness probes
### Non-Functional Requirements
1. **Reliability**
- Graceful handling of all error conditions
- No crashes from user input
- Automatic recovery from transient errors
2. **Observability**
- Clear logging of all operations
- Traceable request flow
- Diagnostic information available
3. **Performance**
- Connection pooling reduces latency
- Efficient error handling paths
- Minimal logging overhead
## Design
### FTS5 Graceful Degradation
```python
# starpunk/search/engine.py
class SearchEngineFactory:
"""Factory for creating appropriate search engine"""
@staticmethod
def create() -> SearchEngine:
"""Create search engine based on availability"""
if SearchEngineFactory._check_fts5():
logger.info("Using FTS5 search engine")
return FTS5SearchEngine()
else:
logger.warning(
"FTS5 not available. Using fallback search engine. "
"For better search performance, please ensure SQLite "
"is compiled with FTS5 support. See: "
"https://www.sqlite.org/fts5.html#compiling_and_using_fts5"
)
return FallbackSearchEngine()
@staticmethod
def _check_fts5() -> bool:
"""Check if FTS5 is available"""
try:
conn = sqlite3.connect(":memory:")
conn.execute(
"CREATE VIRTUAL TABLE test_fts USING fts5(content)"
)
conn.close()
return True
except sqlite3.OperationalError:
return False
class FallbackSearchEngine(SearchEngine):
"""LIKE-based search for systems without FTS5"""
def search(self, query: str, limit: int = 50) -> List[SearchResult]:
"""Perform case-insensitive LIKE search"""
sql = """
SELECT
id,
content,
created_at,
0 as rank -- No ranking available
FROM notes
WHERE
content LIKE ? OR
content LIKE ? OR
content LIKE ?
ORDER BY created_at DESC
LIMIT ?
"""
# Search for term at start, middle, or end
patterns = [
f'{query}%', # Starts with
f'% {query}%', # Word in middle
f'%{query}' # Ends with
]
results = []
with get_db() as conn:
cursor = conn.execute(sql, (*patterns, limit))
for row in cursor:
results.append(SearchResult(*row))
return results
```
### Enhanced Error Messages
```python
# starpunk/errors/messages.py
class ErrorMessages:
"""User-friendly error messages with troubleshooting"""
DATABASE_LOCKED = ErrorInfo(
message="The database is temporarily locked",
suggestion="Please try again in a moment",
details="This usually happens during concurrent writes",
troubleshooting=[
"Wait a few seconds and retry",
"Check for long-running operations",
"Ensure WAL mode is enabled"
]
)
CONFIGURATION_INVALID = ErrorInfo(
message="Configuration error: {detail}",
suggestion="Please check your environment variables",
details="Invalid configuration detected at startup",
troubleshooting=[
"Verify all STARPUNK_* environment variables",
"Check for typos in configuration names",
"Ensure values are in the correct format",
"See docs/deployment/configuration.md"
]
)
MICROPUB_MALFORMED = ErrorInfo(
message="Invalid Micropub request format",
suggestion="Please check your Micropub client configuration",
details="The request doesn't conform to Micropub specification",
troubleshooting=[
"Ensure Content-Type is correct",
"Verify required fields are present",
"Check for proper encoding",
"See https://www.w3.org/TR/micropub/"
]
)
def format_error(self, error_key: str, **kwargs) -> dict:
"""Format error for response"""
error_info = getattr(self, error_key)
return {
'error': {
'message': error_info.message.format(**kwargs),
'suggestion': error_info.suggestion,
'troubleshooting': error_info.troubleshooting
}
}
```
### Database Connection Pool Optimization
```python
# starpunk/database/pool.py
from contextlib import contextmanager
from threading import Semaphore, Lock
from queue import Queue, Empty, Full
import sqlite3
class ConnectionPool:
"""Thread-safe SQLite connection pool"""
def __init__(
self,
database_path: str,
pool_size: int = None,
timeout: float = None
):
self.database_path = database_path
self.pool_size = pool_size or config.DB_CONNECTION_POOL_SIZE
self.timeout = timeout or config.DB_CONNECTION_TIMEOUT
self._pool = Queue(maxsize=self.pool_size)
self._all_connections = []
self._lock = Lock()
self._stats = {
'acquired': 0,
'released': 0,
'created': 0,
'wait_time_total': 0,
'active': 0
}
# Pre-create connections
for _ in range(self.pool_size):
self._create_connection()
def _create_connection(self) -> sqlite3.Connection:
"""Create a new database connection"""
conn = sqlite3.connect(self.database_path)
# Configure connection for production
conn.execute("PRAGMA journal_mode=WAL")
conn.execute(f"PRAGMA busy_timeout={config.DB_BUSY_TIMEOUT}")
conn.execute("PRAGMA synchronous=NORMAL")
conn.execute("PRAGMA temp_store=MEMORY")
# Enable row factory for dict-like access
conn.row_factory = sqlite3.Row
with self._lock:
self._all_connections.append(conn)
self._stats['created'] += 1
return conn
@contextmanager
def acquire(self):
"""Acquire connection from pool"""
start_time = time.time()
conn = None
try:
# Try to get connection with timeout
conn = self._pool.get(timeout=self.timeout)
wait_time = time.time() - start_time
with self._lock:
self._stats['acquired'] += 1
self._stats['wait_time_total'] += wait_time
self._stats['active'] += 1
if wait_time > 1.0:
logger.warning(
"Slow connection acquisition",
extra={'wait_time': wait_time}
)
yield conn
except Empty:
raise DatabaseError(
"Connection pool exhausted",
suggestion="Increase pool size or optimize queries",
details={
'pool_size': self.pool_size,
'timeout': self.timeout
}
)
finally:
if conn:
# Return connection to pool
try:
self._pool.put_nowait(conn)
with self._lock:
self._stats['released'] += 1
self._stats['active'] -= 1
except Full:
# Pool is full, close the connection
conn.close()
def get_stats(self) -> dict:
"""Get pool statistics"""
with self._lock:
return {
**self._stats,
'pool_size': self.pool_size,
'available': self._pool.qsize()
}
def close_all(self):
"""Close all connections in pool"""
while not self._pool.empty():
try:
conn = self._pool.get_nowait()
conn.close()
except Empty:
break
for conn in self._all_connections:
try:
conn.close()
except:
pass
# Global pool instance
_connection_pool = None
def get_connection_pool() -> ConnectionPool:
"""Get or create connection pool"""
global _connection_pool
if _connection_pool is None:
_connection_pool = ConnectionPool(
database_path=config.DATABASE_PATH
)
return _connection_pool
@contextmanager
def get_db():
"""Get database connection from pool"""
pool = get_connection_pool()
with pool.acquire() as conn:
yield conn
```
### Structured Logging Implementation
```python
# starpunk/logging/setup.py
import logging
import json
import sys
from uuid import uuid4
def setup_logging():
"""Configure structured logging for production"""
# Determine environment
is_production = config.ENV == 'production'
# Configure root logger
root = logging.getLogger()
root.setLevel(config.LOG_LEVEL)
# Remove default handler
root.handlers = []
# Create appropriate handler
handler = logging.StreamHandler(sys.stdout)
if is_production:
# JSON format for production
handler.setFormatter(JSONFormatter())
else:
# Human-readable for development
handler.setFormatter(logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'
))
root.addHandler(handler)
# Configure specific loggers
logging.getLogger('starpunk').setLevel(config.LOG_LEVEL)
logging.getLogger('werkzeug').setLevel(logging.WARNING)
logger.info(
"Logging configured",
extra={
'level': config.LOG_LEVEL,
'format': 'json' if is_production else 'human'
}
)
class JSONFormatter(logging.Formatter):
"""JSON log formatter for structured logging"""
def format(self, record):
log_data = {
'timestamp': self.formatTime(record),
'level': record.levelname,
'logger': record.name,
'message': record.getMessage(),
'request_id': getattr(record, 'request_id', None),
}
# Add extra fields
if hasattr(record, 'extra'):
log_data.update(record.extra)
# Add exception info
if record.exc_info:
log_data['exception'] = self.formatException(record.exc_info)
return json.dumps(log_data)
# Request context middleware
from flask import g
@app.before_request
def add_request_id():
"""Add unique request ID for correlation"""
g.request_id = str(uuid4())[:8]
# Configure logger for this request
logging.LoggerAdapter(
logger,
{'request_id': g.request_id}
)
```
### Enhanced Health Checks
```python
# starpunk/health.py
from datetime import datetime
class HealthChecker:
"""System health checking"""
def __init__(self):
self.start_time = datetime.now()
def check_basic(self) -> dict:
"""Basic health check for liveness probe"""
return {
'status': 'healthy',
'timestamp': datetime.now().isoformat()
}
def check_detailed(self) -> dict:
"""Detailed health check for readiness probe"""
checks = {
'database': self._check_database(),
'search': self._check_search(),
'filesystem': self._check_filesystem(),
'memory': self._check_memory()
}
# Overall status
all_healthy = all(c['healthy'] for c in checks.values())
return {
'status': 'healthy' if all_healthy else 'degraded',
'timestamp': datetime.now().isoformat(),
'uptime': str(datetime.now() - self.start_time),
'version': __version__,
'checks': checks
}
def _check_database(self) -> dict:
"""Check database connectivity"""
try:
with get_db() as conn:
conn.execute("SELECT 1")
pool_stats = get_connection_pool().get_stats()
return {
'healthy': True,
'pool_active': pool_stats['active'],
'pool_size': pool_stats['pool_size']
}
except Exception as e:
return {
'healthy': False,
'error': str(e)
}
def _check_search(self) -> dict:
"""Check search engine status"""
try:
engine_type = 'fts5' if has_fts5() else 'fallback'
return {
'healthy': True,
'engine': engine_type,
'enabled': config.SEARCH_ENABLED
}
except Exception as e:
return {
'healthy': False,
'error': str(e)
}
def _check_filesystem(self) -> dict:
"""Check filesystem access"""
try:
# Check if we can write to temp
import tempfile
with tempfile.NamedTemporaryFile() as f:
f.write(b'test')
return {'healthy': True}
except Exception as e:
return {
'healthy': False,
'error': str(e)
}
def _check_memory(self) -> dict:
"""Check memory usage"""
memory_mb = get_memory_usage()
threshold = config.MEMORY_THRESHOLD_MB
return {
'healthy': memory_mb < threshold,
'usage_mb': memory_mb,
'threshold_mb': threshold
}
# Health check endpoints
@app.route('/health')
def health():
"""Basic health check endpoint"""
checker = HealthChecker()
result = checker.check_basic()
status_code = 200 if result['status'] == 'healthy' else 503
return jsonify(result), status_code
@app.route('/health/ready')
def health_ready():
"""Readiness probe endpoint"""
checker = HealthChecker()
# Detailed check only for authenticated or configured
if config.HEALTH_CHECK_DETAILED or is_admin():
result = checker.check_detailed()
else:
result = checker.check_basic()
status_code = 200 if result['status'] == 'healthy' else 503
return jsonify(result), status_code
```
### Session Timeout Handling
```python
# starpunk/auth/session.py
from datetime import datetime, timedelta
class SessionManager:
"""Manage user sessions with configurable timeout"""
def __init__(self):
self.timeout = config.SESSION_TIMEOUT
def create_session(self, user_id: str) -> str:
"""Create new session with timeout"""
session_id = str(uuid4())
expires_at = datetime.now() + timedelta(seconds=self.timeout)
# Store in database
with get_db() as conn:
conn.execute(
"""
INSERT INTO sessions (id, user_id, expires_at, created_at)
VALUES (?, ?, ?, ?)
""",
(session_id, user_id, expires_at, datetime.now())
)
logger.info(
"Session created",
extra={
'user_id': user_id,
'timeout': self.timeout
}
)
return session_id
def validate_session(self, session_id: str) -> Optional[str]:
"""Validate session and extend if valid"""
with get_db() as conn:
result = conn.execute(
"""
SELECT user_id, expires_at
FROM sessions
WHERE id = ? AND expires_at > ?
""",
(session_id, datetime.now())
).fetchone()
if result:
# Extend session
new_expires = datetime.now() + timedelta(
seconds=self.timeout
)
conn.execute(
"""
UPDATE sessions
SET expires_at = ?, last_accessed = ?
WHERE id = ?
""",
(new_expires, datetime.now(), session_id)
)
return result['user_id']
return None
def cleanup_expired(self):
"""Remove expired sessions"""
with get_db() as conn:
deleted = conn.execute(
"""
DELETE FROM sessions
WHERE expires_at < ?
""",
(datetime.now(),)
).rowcount
if deleted > 0:
logger.info(
"Cleaned up expired sessions",
extra={'count': deleted}
)
```
## Testing Strategy
### Unit Tests
1. FTS5 detection and fallback
2. Error message formatting
3. Connection pool operations
4. Health check components
5. Session timeout logic
### Integration Tests
1. Search with and without FTS5
2. Error handling end-to-end
3. Connection pool under load
4. Health endpoints
5. Session expiration
### Load Tests
```python
def test_connection_pool_under_load():
"""Test connection pool with concurrent requests"""
pool = ConnectionPool(":memory:", pool_size=5)
def worker():
for _ in range(100):
with pool.acquire() as conn:
conn.execute("SELECT 1")
threads = [Thread(target=worker) for _ in range(20)]
for t in threads:
t.start()
for t in threads:
t.join()
stats = pool.get_stats()
assert stats['acquired'] == 2000
assert stats['released'] == 2000
```
## Migration Considerations
### Database Schema Updates
```sql
-- Add sessions table if not exists
CREATE TABLE IF NOT EXISTS sessions (
id TEXT PRIMARY KEY,
user_id TEXT NOT NULL,
created_at TIMESTAMP NOT NULL,
expires_at TIMESTAMP NOT NULL,
last_accessed TIMESTAMP,
INDEX idx_sessions_expires (expires_at)
);
```
### Configuration Migration
1. Add new environment variables with defaults
2. Document in deployment guide
3. Update example .env file
## Performance Impact
### Expected Improvements
- Connection pooling: 20-30% reduction in query latency
- Structured logging: <1ms per log statement
- Health checks: <10ms response time
- Session management: Minimal overhead
### Resource Usage
- Connection pool: ~5MB per connection
- Logging buffer: <1MB
- Session storage: ~1KB per active session
## Security Considerations
1. **Connection Pool**: Prevent connection exhaustion attacks
2. **Error Messages**: Never expose sensitive information
3. **Health Checks**: Require auth for detailed info
4. **Session Timeout**: Configurable for security/UX balance
5. **Logging**: Sanitize all user input
## Acceptance Criteria
1. ✅ FTS5 unavailability handled gracefully
2. ✅ Clear error messages with troubleshooting
3. ✅ Connection pooling implemented and optimized
4. ✅ Structured logging with levels
5. ✅ Enhanced health check endpoints
6. ✅ Session timeout handling
7. ✅ All features configurable
8. ✅ Zero breaking changes
9. ✅ Performance improvements measured
10. ✅ Production deployment guide updated