Files
StarPunk/docs/design/v1.1.1/performance-monitoring-spec.md
Phil Skentelbery e589f5bd6c docs: Fix ADR numbering conflicts and create comprehensive documentation indices
This commit resolves all documentation issues identified in the comprehensive review:

CRITICAL FIXES:
- Renumbered duplicate ADRs to eliminate conflicts:
  * ADR-022-migration-race-condition-fix → ADR-037
  * ADR-022-syndication-formats → ADR-038
  * ADR-023-microformats2-compliance → ADR-040
  * ADR-027-versioning-strategy-for-authorization-removal → ADR-042
  * ADR-030-CORRECTED-indieauth-endpoint-discovery → ADR-043
  * ADR-031-endpoint-discovery-implementation → ADR-044

- Updated all cross-references to renumbered ADRs in:
  * docs/projectplan/ROADMAP.md
  * docs/reports/v1.0.0-rc.5-migration-race-condition-implementation.md
  * docs/reports/2025-11-24-endpoint-discovery-analysis.md
  * docs/decisions/ADR-043-CORRECTED-indieauth-endpoint-discovery.md
  * docs/decisions/ADR-044-endpoint-discovery-implementation.md

- Updated README.md version from 1.0.0 to 1.1.0
- Tracked ADR-021-indieauth-provider-strategy.md in git

DOCUMENTATION IMPROVEMENTS:
- Created comprehensive INDEX.md files for all docs/ subdirectories:
  * docs/architecture/INDEX.md (28 documents indexed)
  * docs/decisions/INDEX.md (55 ADRs indexed with topical grouping)
  * docs/design/INDEX.md (phase plans and feature designs)
  * docs/standards/INDEX.md (9 standards with compliance checklist)
  * docs/reports/INDEX.md (57 implementation reports)
  * docs/deployment/INDEX.md (deployment guides)
  * docs/examples/INDEX.md (code samples and usage patterns)
  * docs/migration/INDEX.md (version migration guides)
  * docs/releases/INDEX.md (release documentation)
  * docs/reviews/INDEX.md (architectural reviews)
  * docs/security/INDEX.md (security documentation)

- Updated CLAUDE.md with complete folder descriptions including:
  * docs/migration/
  * docs/releases/
  * docs/security/

VERIFICATION:
- All ADR numbers now sequential and unique (50 total ADRs)
- No duplicate ADR numbers remain
- All cross-references updated and verified
- Documentation structure consistent and well-organized

These changes improve documentation discoverability, maintainability, and
ensure proper version tracking. All index files follow consistent format
with clear navigation guidance.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-25 13:28:56 -07:00

487 lines
14 KiB
Markdown

# Performance Monitoring Foundation Specification
## Overview
The performance monitoring foundation provides operators with visibility into StarPunk's runtime behavior, helping identify bottlenecks, track resource usage, and ensure optimal performance in production.
## Requirements
### Functional Requirements
1. **Timing Instrumentation**
- Measure execution time for key operations
- Track request processing duration
- Monitor database query execution time
- Measure template rendering time
- Track static file serving time
2. **Database Performance Logging**
- Log all queries when enabled
- Detect and warn about slow queries
- Track connection pool usage
- Monitor transaction duration
- Count query frequency by type
3. **Memory Usage Tracking**
- Monitor process RSS memory
- Track memory growth over time
- Detect memory leaks
- Per-request memory delta
- Memory high water mark
4. **Performance Dashboard**
- Real-time metrics display
- Historical data (last 15 minutes)
- Slow query log
- Memory usage visualization
- Endpoint performance table
### Non-Functional Requirements
1. **Performance Impact**
- Monitoring overhead <1% when enabled
- Zero impact when disabled
- Efficient memory usage (<1MB for metrics)
- No blocking operations
2. **Usability**
- Simple enable/disable via configuration
- Clear, actionable metrics
- Self-explanatory dashboard
- No external dependencies
## Design
### Architecture
```
┌──────────────────────────────────────┐
│ HTTP Request │
│ ↓ │
│ Performance Middleware │
│ (start timer) │
│ ↓ │
│ ┌─────────────────┐ │
│ │ Request Handler │ │
│ │ ↓ │ │
│ │ Database Layer │←── Query Monitor
│ │ ↓ │ │
│ │ Business Logic │←── Function Timer
│ │ ↓ │ │
│ │ Response Build │ │
│ └─────────────────┘ │
│ ↓ │
│ Performance Middleware │
│ (stop timer) │
│ ↓ │
│ Metrics Collector ← Memory Monitor
│ ↓ │
│ Circular Buffer │
│ ↓ │
│ Admin Dashboard │
└──────────────────────────────────────┘
```
### Data Model
```python
from dataclasses import dataclass
from typing import Optional, Dict, Any
from datetime import datetime
from collections import deque
@dataclass
class PerformanceMetric:
"""Single performance measurement"""
timestamp: datetime
category: str # 'http', 'db', 'function', 'memory'
operation: str # Specific operation name
duration_ms: Optional[float] # For timed operations
value: Optional[float] # For measurements
metadata: Dict[str, Any] # Additional context
class MetricsBuffer:
"""Circular buffer for metrics storage"""
def __init__(self, max_size: int = 1000):
self.metrics = deque(maxlen=max_size)
self.slow_queries = deque(maxlen=100)
def add_metric(self, metric: PerformanceMetric):
"""Add metric to buffer"""
self.metrics.append(metric)
# Special handling for slow queries
if (metric.category == 'db' and
metric.duration_ms > config.PERF_SLOW_QUERY_THRESHOLD * 1000):
self.slow_queries.append(metric)
def get_recent(self, seconds: int = 900) -> List[PerformanceMetric]:
"""Get metrics from last N seconds"""
cutoff = datetime.now() - timedelta(seconds=seconds)
return [m for m in self.metrics if m.timestamp > cutoff]
def get_summary(self) -> Dict[str, Any]:
"""Get summary statistics"""
recent = self.get_recent()
# Group by category and operation
summary = defaultdict(lambda: {
'count': 0,
'total_ms': 0,
'avg_ms': 0,
'max_ms': 0,
'p95_ms': 0,
'p99_ms': 0
})
# Calculate statistics...
return dict(summary)
```
### Instrumentation Implementation
#### Database Query Monitoring
```python
import sqlite3
import time
from contextlib import contextmanager
@contextmanager
def monitored_connection():
"""Database connection with monitoring"""
conn = sqlite3.connect(DATABASE_PATH)
if config.PERF_MONITORING_ENABLED:
# Set trace callback for query logging
def trace_callback(statement):
start_time = time.perf_counter()
# Execute query (via monkey-patching)
original_execute = conn.execute
def monitored_execute(sql, params=None):
result = original_execute(sql, params)
duration = time.perf_counter() - start_time
metric = PerformanceMetric(
timestamp=datetime.now(),
category='db',
operation=sql.split()[0].upper(), # SELECT, INSERT, etc
duration_ms=duration * 1000,
metadata={
'query': sql if config.PERF_LOG_QUERIES else None,
'params_count': len(params) if params else 0
}
)
metrics_buffer.add_metric(metric)
if duration > config.PERF_SLOW_QUERY_THRESHOLD:
logger.warning(
"Slow query detected",
extra={
'query': sql,
'duration_ms': duration * 1000
}
)
return result
conn.execute = monitored_execute
conn.set_trace_callback(trace_callback)
yield conn
conn.close()
```
#### HTTP Request Monitoring
```python
from flask import g, request
import time
@app.before_request
def start_request_timer():
"""Start timing the request"""
if config.PERF_MONITORING_ENABLED:
g.start_time = time.perf_counter()
g.start_memory = get_memory_usage()
@app.after_request
def end_request_timer(response):
"""End timing and record metrics"""
if config.PERF_MONITORING_ENABLED and hasattr(g, 'start_time'):
duration = time.perf_counter() - g.start_time
memory_delta = get_memory_usage() - g.start_memory
metric = PerformanceMetric(
timestamp=datetime.now(),
category='http',
operation=f"{request.method} {request.endpoint}",
duration_ms=duration * 1000,
metadata={
'method': request.method,
'path': request.path,
'status': response.status_code,
'size': len(response.get_data()),
'memory_delta': memory_delta
}
)
metrics_buffer.add_metric(metric)
return response
```
#### Memory Monitoring
```python
import resource
import threading
import time
class MemoryMonitor:
"""Background thread for memory monitoring"""
def __init__(self):
self.running = False
self.thread = None
self.high_water_mark = 0
def start(self):
"""Start memory monitoring"""
if not config.PERF_MEMORY_TRACKING:
return
self.running = True
self.thread = threading.Thread(target=self._monitor)
self.thread.daemon = True
self.thread.start()
def _monitor(self):
"""Monitor memory usage"""
while self.running:
memory_mb = get_memory_usage()
self.high_water_mark = max(self.high_water_mark, memory_mb)
metric = PerformanceMetric(
timestamp=datetime.now(),
category='memory',
operation='rss',
value=memory_mb,
metadata={
'high_water_mark': self.high_water_mark
}
)
metrics_buffer.add_metric(metric)
time.sleep(10) # Check every 10 seconds
def get_memory_usage() -> float:
"""Get current memory usage in MB"""
usage = resource.getrusage(resource.RUSAGE_SELF)
return usage.ru_maxrss / 1024 # Convert KB to MB
```
### Performance Dashboard
#### Dashboard Route
```python
@app.route('/admin/performance')
@require_admin
def performance_dashboard():
"""Display performance metrics"""
if not config.PERF_MONITORING_ENABLED:
return render_template('admin/performance_disabled.html')
summary = metrics_buffer.get_summary()
slow_queries = list(metrics_buffer.slow_queries)
memory_data = get_memory_graph_data()
return render_template(
'admin/performance.html',
summary=summary,
slow_queries=slow_queries,
memory_data=memory_data,
uptime=get_uptime(),
config={
'slow_threshold': config.PERF_SLOW_QUERY_THRESHOLD,
'monitoring_enabled': config.PERF_MONITORING_ENABLED,
'memory_tracking': config.PERF_MEMORY_TRACKING
}
)
```
#### Dashboard Template Structure
```html
<div class="performance-dashboard">
<h2>Performance Monitoring</h2>
<!-- Overview Stats -->
<div class="stats-grid">
<div class="stat">
<h3>Uptime</h3>
<p>{{ uptime }}</p>
</div>
<div class="stat">
<h3>Total Requests</h3>
<p>{{ summary.http.count }}</p>
</div>
<div class="stat">
<h3>Avg Response Time</h3>
<p>{{ summary.http.avg_ms|round(2) }}ms</p>
</div>
<div class="stat">
<h3>Memory Usage</h3>
<p>{{ current_memory }}MB</p>
</div>
</div>
<!-- Slow Queries -->
<div class="slow-queries">
<h3>Slow Queries (&gt;{{ config.slow_threshold }}s)</h3>
<table>
<thead>
<tr>
<th>Time</th>
<th>Duration</th>
<th>Query</th>
</tr>
</thead>
<tbody>
{% for query in slow_queries %}
<tr>
<td>{{ query.timestamp|timeago }}</td>
<td>{{ query.duration_ms|round(2) }}ms</td>
<td><code>{{ query.metadata.query|truncate(100) }}</code></td>
</tr>
{% endfor %}
</tbody>
</table>
</div>
<!-- Endpoint Performance -->
<div class="endpoint-performance">
<h3>Endpoint Performance</h3>
<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Calls</th>
<th>Avg (ms)</th>
<th>P95 (ms)</th>
<th>P99 (ms)</th>
</tr>
</thead>
<tbody>
{% for endpoint, stats in summary.endpoints.items() %}
<tr>
<td>{{ endpoint }}</td>
<td>{{ stats.count }}</td>
<td>{{ stats.avg_ms|round(2) }}</td>
<td>{{ stats.p95_ms|round(2) }}</td>
<td>{{ stats.p99_ms|round(2) }}</td>
</tr>
{% endfor %}
</tbody>
</table>
</div>
<!-- Memory Graph -->
<div class="memory-graph">
<h3>Memory Usage (Last 15 Minutes)</h3>
<canvas id="memory-chart"></canvas>
</div>
</div>
```
### Configuration Options
```python
# Performance monitoring configuration
PERF_MONITORING_ENABLED = Config.get_bool("STARPUNK_PERF_MONITORING_ENABLED", False)
PERF_SLOW_QUERY_THRESHOLD = Config.get_float("STARPUNK_PERF_SLOW_QUERY_THRESHOLD", 1.0)
PERF_LOG_QUERIES = Config.get_bool("STARPUNK_PERF_LOG_QUERIES", False)
PERF_MEMORY_TRACKING = Config.get_bool("STARPUNK_PERF_MEMORY_TRACKING", False)
PERF_BUFFER_SIZE = Config.get_int("STARPUNK_PERF_BUFFER_SIZE", 1000)
PERF_SAMPLE_RATE = Config.get_float("STARPUNK_PERF_SAMPLE_RATE", 1.0)
```
## Testing Strategy
### Unit Tests
1. Metric collection and storage
2. Circular buffer behavior
3. Summary statistics calculation
4. Memory monitoring functions
5. Query monitoring callbacks
### Integration Tests
1. End-to-end request monitoring
2. Slow query detection
3. Memory leak detection
4. Dashboard rendering
5. Performance overhead measurement
### Performance Tests
```python
def test_monitoring_overhead():
"""Verify monitoring overhead is <1%"""
# Baseline without monitoring
config.PERF_MONITORING_ENABLED = False
baseline_time = measure_operation_time()
# With monitoring
config.PERF_MONITORING_ENABLED = True
monitored_time = measure_operation_time()
overhead = (monitored_time - baseline_time) / baseline_time
assert overhead < 0.01 # Less than 1%
```
## Security Considerations
1. **Authentication**: Dashboard requires admin access
2. **Query Sanitization**: Don't log sensitive query parameters
3. **Rate Limiting**: Prevent dashboard DoS
4. **Data Retention**: Automatic cleanup of old metrics
5. **Configuration**: Validate all config values
## Performance Impact
### Expected Overhead
- Request timing: <0.1ms per request
- Query monitoring: <0.5ms per query
- Memory tracking: <1% CPU (background thread)
- Dashboard rendering: <50ms
- Total overhead: <1% when fully enabled
### Optimization Strategies
1. Use sampling for high-frequency operations
2. Lazy calculation of statistics
3. Efficient circular buffer implementation
4. Minimal string operations in hot path
## Documentation Requirements
### Administrator Guide
- How to enable monitoring
- Understanding metrics
- Identifying performance issues
- Tuning configuration
### Dashboard User Guide
- Navigating the dashboard
- Interpreting metrics
- Finding slow queries
- Memory usage patterns
## Acceptance Criteria
1. ✅ Timing instrumentation for all key operations
2. ✅ Database query performance logging
3. ✅ Slow query detection with configurable threshold
4. ✅ Memory usage tracking
5. ✅ Performance dashboard at /admin/performance
6. ✅ Monitoring overhead <1%
7. ✅ Zero impact when disabled
8. ✅ Circular buffer limits memory usage
9. ✅ All metrics clearly documented
10. ✅ Security review passed