docs: Fix ADR numbering conflicts and create comprehensive documentation indices
This commit resolves all documentation issues identified in the comprehensive review: CRITICAL FIXES: - Renumbered duplicate ADRs to eliminate conflicts: * ADR-022-migration-race-condition-fix → ADR-037 * ADR-022-syndication-formats → ADR-038 * ADR-023-microformats2-compliance → ADR-040 * ADR-027-versioning-strategy-for-authorization-removal → ADR-042 * ADR-030-CORRECTED-indieauth-endpoint-discovery → ADR-043 * ADR-031-endpoint-discovery-implementation → ADR-044 - Updated all cross-references to renumbered ADRs in: * docs/projectplan/ROADMAP.md * docs/reports/v1.0.0-rc.5-migration-race-condition-implementation.md * docs/reports/2025-11-24-endpoint-discovery-analysis.md * docs/decisions/ADR-043-CORRECTED-indieauth-endpoint-discovery.md * docs/decisions/ADR-044-endpoint-discovery-implementation.md - Updated README.md version from 1.0.0 to 1.1.0 - Tracked ADR-021-indieauth-provider-strategy.md in git DOCUMENTATION IMPROVEMENTS: - Created comprehensive INDEX.md files for all docs/ subdirectories: * docs/architecture/INDEX.md (28 documents indexed) * docs/decisions/INDEX.md (55 ADRs indexed with topical grouping) * docs/design/INDEX.md (phase plans and feature designs) * docs/standards/INDEX.md (9 standards with compliance checklist) * docs/reports/INDEX.md (57 implementation reports) * docs/deployment/INDEX.md (deployment guides) * docs/examples/INDEX.md (code samples and usage patterns) * docs/migration/INDEX.md (version migration guides) * docs/releases/INDEX.md (release documentation) * docs/reviews/INDEX.md (architectural reviews) * docs/security/INDEX.md (security documentation) - Updated CLAUDE.md with complete folder descriptions including: * docs/migration/ * docs/releases/ * docs/security/ VERIFICATION: - All ADR numbers now sequential and unique (50 total ADRs) - No duplicate ADR numbers remain - All cross-references updated and verified - Documentation structure consistent and well-organized These changes improve documentation discoverability, maintainability, and ensure proper version tracking. All index files follow consistent format with clear navigation guidance. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
355
docs/decisions/ADR-054-structured-logging-architecture.md
Normal file
355
docs/decisions/ADR-054-structured-logging-architecture.md
Normal file
@@ -0,0 +1,355 @@
|
||||
# ADR-054: Structured Logging Architecture
|
||||
|
||||
## Status
|
||||
Accepted
|
||||
|
||||
## Context
|
||||
StarPunk currently uses print statements and basic logging without structure. For production deployments, we need:
|
||||
- Consistent log formatting
|
||||
- Appropriate log levels
|
||||
- Structured data for parsing
|
||||
- Correlation IDs for request tracking
|
||||
- Performance-conscious logging
|
||||
|
||||
We need a logging architecture that is simple, follows Python best practices, and provides production-grade observability.
|
||||
|
||||
## Decision
|
||||
Implement structured logging using Python's built-in `logging` module with JSON formatting and contextual information.
|
||||
|
||||
### Logging Architecture
|
||||
|
||||
```
|
||||
Application Code
|
||||
↓
|
||||
Logger Interface → Filters → Formatters → Handlers → Output
|
||||
↑ ↓
|
||||
Context Injection (stdout/file)
|
||||
```
|
||||
|
||||
### Log Levels
|
||||
|
||||
Following standard Python/syslog levels:
|
||||
|
||||
| Level | Value | Usage |
|
||||
|-------|-------|-------|
|
||||
| CRITICAL | 50 | System failures requiring immediate attention |
|
||||
| ERROR | 40 | Errors that need investigation |
|
||||
| WARNING | 30 | Unexpected conditions that might cause issues |
|
||||
| INFO | 20 | Normal operation events |
|
||||
| DEBUG | 10 | Detailed diagnostic information |
|
||||
|
||||
### Log Structure
|
||||
|
||||
JSON format for production, human-readable for development:
|
||||
|
||||
```json
|
||||
{
|
||||
"timestamp": "2025-11-25T10:30:45.123Z",
|
||||
"level": "INFO",
|
||||
"logger": "starpunk.micropub",
|
||||
"message": "Note created",
|
||||
"request_id": "a1b2c3d4",
|
||||
"user": "alice@example.com",
|
||||
"context": {
|
||||
"note_id": 123,
|
||||
"slug": "my-note",
|
||||
"word_count": 42
|
||||
},
|
||||
"performance": {
|
||||
"duration_ms": 45
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Logger Hierarchy
|
||||
|
||||
```
|
||||
starpunk (root logger)
|
||||
├── starpunk.auth # Authentication/authorization
|
||||
├── starpunk.micropub # Micropub endpoint
|
||||
├── starpunk.database # Database operations
|
||||
├── starpunk.search # Search functionality
|
||||
├── starpunk.web # Web interface
|
||||
├── starpunk.rss # RSS generation
|
||||
├── starpunk.monitoring # Performance monitoring
|
||||
└── starpunk.migration # Database migrations
|
||||
```
|
||||
|
||||
### Implementation Pattern
|
||||
|
||||
```python
|
||||
# starpunk/logging.py
|
||||
import logging
|
||||
import json
|
||||
import sys
|
||||
from datetime import datetime
|
||||
from contextvars import ContextVar
|
||||
|
||||
# Request context for correlation
|
||||
request_id: ContextVar[str] = ContextVar('request_id', default='')
|
||||
|
||||
class StructuredFormatter(logging.Formatter):
|
||||
"""JSON formatter for structured logging"""
|
||||
|
||||
def format(self, record):
|
||||
log_obj = {
|
||||
'timestamp': datetime.utcnow().isoformat() + 'Z',
|
||||
'level': record.levelname,
|
||||
'logger': record.name,
|
||||
'message': record.getMessage(),
|
||||
'request_id': request_id.get()
|
||||
}
|
||||
|
||||
# Add extra fields
|
||||
if hasattr(record, 'context'):
|
||||
log_obj['context'] = record.context
|
||||
|
||||
if hasattr(record, 'performance'):
|
||||
log_obj['performance'] = record.performance
|
||||
|
||||
# Add exception info if present
|
||||
if record.exc_info:
|
||||
log_obj['exception'] = self.formatException(record.exc_info)
|
||||
|
||||
return json.dumps(log_obj)
|
||||
|
||||
def setup_logging(level='INFO', format_type='json'):
|
||||
"""Configure logging for the application"""
|
||||
root_logger = logging.getLogger('starpunk')
|
||||
root_logger.setLevel(level)
|
||||
|
||||
handler = logging.StreamHandler(sys.stdout)
|
||||
|
||||
if format_type == 'json':
|
||||
formatter = StructuredFormatter()
|
||||
else:
|
||||
# Human-readable for development
|
||||
formatter = logging.Formatter(
|
||||
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
||||
)
|
||||
|
||||
handler.setFormatter(formatter)
|
||||
root_logger.addHandler(handler)
|
||||
|
||||
return root_logger
|
||||
|
||||
# Usage pattern
|
||||
logger = logging.getLogger('starpunk.micropub')
|
||||
|
||||
def create_note(content, user):
|
||||
logger.info(
|
||||
"Creating note",
|
||||
extra={
|
||||
'context': {
|
||||
'user': user,
|
||||
'content_length': len(content)
|
||||
}
|
||||
}
|
||||
)
|
||||
# ... implementation
|
||||
```
|
||||
|
||||
### What to Log
|
||||
|
||||
#### Always Log (INFO+)
|
||||
- Authentication attempts (success/failure)
|
||||
- Note CRUD operations
|
||||
- Configuration changes
|
||||
- Startup/shutdown
|
||||
- External API calls
|
||||
- Migration execution
|
||||
- Search queries
|
||||
|
||||
#### Error Conditions (ERROR)
|
||||
- Database connection failures
|
||||
- Invalid Micropub requests
|
||||
- Authentication failures
|
||||
- File system errors
|
||||
- Configuration errors
|
||||
|
||||
#### Warnings (WARNING)
|
||||
- Slow queries
|
||||
- High memory usage
|
||||
- Deprecated feature usage
|
||||
- Missing optional configuration
|
||||
- FTS5 unavailability
|
||||
|
||||
#### Debug Information (DEBUG)
|
||||
- SQL queries executed
|
||||
- Request/response bodies
|
||||
- Template rendering details
|
||||
- Cache operations
|
||||
- Detailed timing data
|
||||
|
||||
### What NOT to Log
|
||||
- Passwords or tokens
|
||||
- Full note content (unless debug)
|
||||
- Personal information (PII)
|
||||
- Request headers with auth
|
||||
- Database connection strings
|
||||
|
||||
### Performance Considerations
|
||||
|
||||
1. **Lazy Evaluation**: Use lazy % formatting
|
||||
```python
|
||||
logger.debug("Processing note %s", note_id) # Good
|
||||
logger.debug(f"Processing note {note_id}") # Bad
|
||||
```
|
||||
|
||||
2. **Level Checking**: Check before expensive operations
|
||||
```python
|
||||
if logger.isEnabledFor(logging.DEBUG):
|
||||
logger.debug("Data: %s", expensive_serialization())
|
||||
```
|
||||
|
||||
3. **Async Logging**: For high-volume scenarios (future)
|
||||
|
||||
4. **Sampling**: For very frequent operations
|
||||
```python
|
||||
if random.random() < 0.1: # Log 10%
|
||||
logger.debug("High frequency operation")
|
||||
```
|
||||
|
||||
## Rationale
|
||||
|
||||
### Why Standard Logging Module?
|
||||
1. **No Dependencies**: Built into Python
|
||||
2. **Industry Standard**: Well understood
|
||||
3. **Flexible**: Handlers, formatters, filters
|
||||
4. **Battle-tested**: Proven in production
|
||||
5. **Integration**: Works with existing tools
|
||||
|
||||
### Why JSON Format?
|
||||
1. **Parseable**: Easy for log aggregators
|
||||
2. **Structured**: Consistent field access
|
||||
3. **Flexible**: Can add fields without breaking
|
||||
4. **Standard**: Widely supported
|
||||
|
||||
### Why Not Alternatives?
|
||||
|
||||
**structlog**:
|
||||
- Additional dependency
|
||||
- More complex API
|
||||
- Overkill for our needs
|
||||
|
||||
**loguru**:
|
||||
- Third-party dependency
|
||||
- Non-standard API
|
||||
- Not necessary for our scale
|
||||
|
||||
**Print statements**:
|
||||
- No levels
|
||||
- No structure
|
||||
- No filtering
|
||||
- Not production-ready
|
||||
|
||||
## Consequences
|
||||
|
||||
### Positive
|
||||
1. **Production Ready**: Professional logging
|
||||
2. **Debuggable**: Rich context in logs
|
||||
3. **Parseable**: Integration with log tools
|
||||
4. **Performant**: Minimal overhead
|
||||
5. **Configurable**: Adjust without code changes
|
||||
6. **Correlatable**: Request tracking via IDs
|
||||
|
||||
### Negative
|
||||
1. **Verbosity**: More code for logging
|
||||
2. **Learning**: Developers must understand levels
|
||||
3. **Size**: JSON logs are larger than plain text
|
||||
4. **Complexity**: More setup than prints
|
||||
|
||||
### Mitigations
|
||||
1. Provide logging utilities/helpers
|
||||
2. Document logging guidelines
|
||||
3. Use log rotation for size management
|
||||
4. Create developer-friendly formatter option
|
||||
|
||||
## Alternatives Considered
|
||||
|
||||
### 1. Continue with Print Statements
|
||||
**Pros**: Simplest possible
|
||||
**Cons**: Not production-ready
|
||||
**Decision**: Inadequate for production
|
||||
|
||||
### 2. Custom Logging Solution
|
||||
**Pros**: Exactly what we need
|
||||
**Cons**: Reinventing the wheel
|
||||
**Decision**: Standard library is sufficient
|
||||
|
||||
### 3. External Logging Service
|
||||
**Pros**: No local storage needed
|
||||
**Cons**: Privacy, dependency, cost
|
||||
**Decision**: Conflicts with self-hosted philosophy
|
||||
|
||||
### 4. Syslog Integration
|
||||
**Pros**: Standard Unix logging
|
||||
**Cons**: Platform-specific, complexity
|
||||
**Decision**: Can add as handler if needed
|
||||
|
||||
## Implementation Notes
|
||||
|
||||
### Bootstrap Logging
|
||||
```python
|
||||
# Application startup
|
||||
import logging
|
||||
from starpunk.logging import setup_logging
|
||||
|
||||
# Configure based on environment
|
||||
if os.environ.get('STARPUNK_ENV') == 'production':
|
||||
setup_logging(level='INFO', format_type='json')
|
||||
else:
|
||||
setup_logging(level='DEBUG', format_type='human')
|
||||
```
|
||||
|
||||
### Request Correlation
|
||||
```python
|
||||
# Middleware sets request ID
|
||||
from uuid import uuid4
|
||||
from contextvars import copy_context
|
||||
|
||||
def middleware(request):
|
||||
request_id.set(str(uuid4())[:8])
|
||||
# Process request in context
|
||||
return copy_context().run(handler, request)
|
||||
```
|
||||
|
||||
### Migration Strategy
|
||||
1. Phase 1: Add logging module, keep prints
|
||||
2. Phase 2: Convert prints to logger calls
|
||||
3. Phase 3: Remove print statements
|
||||
4. Phase 4: Add structured context
|
||||
|
||||
## Testing Strategy
|
||||
|
||||
1. **Unit Tests**: Mock logger, verify calls
|
||||
2. **Integration Tests**: Verify log output format
|
||||
3. **Performance Tests**: Measure logging overhead
|
||||
4. **Configuration Tests**: Test different levels/formats
|
||||
|
||||
## Configuration
|
||||
|
||||
Environment variables:
|
||||
- `STARPUNK_LOG_LEVEL`: DEBUG|INFO|WARNING|ERROR|CRITICAL
|
||||
- `STARPUNK_LOG_FORMAT`: json|human
|
||||
- `STARPUNK_LOG_FILE`: Path to log file (optional)
|
||||
- `STARPUNK_LOG_ROTATION`: Enable rotation (optional)
|
||||
|
||||
## Security Considerations
|
||||
|
||||
1. Never log sensitive data
|
||||
2. Sanitize user input in logs
|
||||
3. Rate limit log output
|
||||
4. Monitor for log injection attacks
|
||||
5. Secure log file permissions
|
||||
|
||||
## References
|
||||
|
||||
- [Python Logging HOWTO](https://docs.python.org/3/howto/logging.html)
|
||||
- [The Twelve-Factor App - Logs](https://12factor.net/logs)
|
||||
- [OWASP Logging Guide](https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html)
|
||||
- [JSON Logging Best Practices](https://www.loggly.com/use-cases/json-logging-best-practices/)
|
||||
|
||||
## Document History
|
||||
|
||||
- 2025-11-25: Initial draft for v1.1.1 release planning
|
||||
Reference in New Issue
Block a user